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ABSTRACT 

It is proved tha t  if a finite-dimensional Banach space X has the property tha t  

all its an-dimensional  subspaces are K-isomorphic, for some 0 < c~ < 1 and 

K _> 1, then X is f(c~, K)-isomorphic to a Hilbert space, where f(t~, K) is cK 3/2 , 

i f0 < c~ < 2/3 and cK 2, i f2 /3  < c~ < 1, and where c -= c(a)  depends on c~ only. 

In t roduc t ion  

The problem of infinite-dimensional homogeneous Banach spaces has been arou- 

nd since the very beginning of the theory. S. Banach in the original Polish 
edition of his fundamental book [Ba] attributed this problem to S. Mazur (p. 

227). Despite the fact that more than half a century has elapsed, relatively little 
is known about the structure of such spaces. A local finite-dimensional version 

of the problem was raised by V. Milman. It can be stated as follows. 

(Q) Given a E (0,1) and K > 1, does there ezist a function f (a ,  K)  with the 

property that whenever X is an n-dimensional Banach space such that all its 

[an]-dimen~ional sub~paee~ are K-isomorphic then X is f (a ,g)- isomorphie  to 

the n-dimensional Hilbert space l~ f 
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J. Bourgaln proved in [B.2] that the answer to the question above is positive 

for o~ sufficiently small. His proof yields a rather unpleasant function Jr(a, K). 

The aim of this paper is to present a complete solution to (Q) for all ex E (0,1) 

and K > 1; furthermore, we give a simple, although probably not asymptot- 

ically best, dependence of f on ol and K. The general scheme of the proof 

follows similar lines to Bourgaln's. For an isometric variant of the homogeneous 

spaces problem consult Gromov's paper [Gr]; some partial results on the infinite- 

dimensional version can be found in Johnson's paper [J]. 

Let us describe the main steps of the proof and the content of the paper. 

For technical reasons we work in the dual setting, with quotients rather than 

subspaces. In the first step, Section 2, we study random quotients of a fixed 

n-dimensional Banach space X = (R", II" II) and we generalize the fundamental 

idea of Gluskin [G.1] for arbitrary spaces. Let us mention that an investigation 

of random quotients of l~, (and of fin) proved fruitful in several long-standing 

problems on geometry of Banach spaces (cf. e.g. [B.1], [G.2], [Ma.2], [Ma.3], [R], 

[Sz.2]). Here we give lower estimates for the Banach-Mazur distance between 

random [oral-dimensional quotients of X in terms of some geometric and volu- 

metric invariants of X. The crucial point of this approach is stated in Proposition 

2.2 which contains rather delicate estimates of Ham" measure of some subsets of 

Grassmann manifold G,,~,,  related to a fixed operator acting in R". The proof 

of this proposition is deferred to Section 5. 
The next important step is to show that by first passing to a suitable quotient 

Y of X and only then considering random [an]-dimensional quotients of Y, one 
can essentially improve lower estimates for mutual distances of these random 

quotients. This is achieved by two results from Section 3. Proposition 3.2 estab- 

lishes an inequality between an invariant introduced in Section 2 and the volume 

ratio of a space. (This already leads to a generalization of Gluskin's theorem, 

in Theorem 3.6.) Further, Proposition 3.5 shows that every n-dimensional Ba- 
nach space X has, for every ~ E (0,1), a [6n]-dimensional quotient Y with a 

"nicely bounded" volume ratio and such that the formal identity operator from 

l~n] into l~6n] admits a "nicely bounded" factorization through Y. The proof of 

the latter result is based on a deep result of Milman [Mi], and recent techniques 

on Dvoretzky-Rogers factorization by Bourgaln, Szarek and Talagrand [B-Sz] 

and [Sz-Ta]. Some other technical estimates of this section also require a recent 

refinement of Milman's result due to Pisier [P.1] and [P.2]. 
Section 4 contains the solution of the finite-dimensional homogeneous Banach 

spaces problem. Also, we give some other related results. In particular, we 
establish a dichotomous behaviour of the Banach-Mazur distance for families of 
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random quotients of a finite-dimensional Banach space. It is shown that  every 

space X has a quotient X1 of proportional dimension, such that  either X1 is 

Euclidean, or, for a random pair of quotients of X1, the Banach-Mazur distance 

is large. 

An initial version of the results of this paper constituted the first part of the 

preprint "Random subspaces and quotients of finite-dimensional Banach spaces" 

(Odense University 1989, Preprint no. 8), circulated in the Spring 1989. 

1. N o t a t i o n  and Termino logy  

Our notation essentially follows [M-S], [P.2] and [T], and all notions unexplained 

here can be found in one of these books. Some of frequently used general con- 

ventions and notions are described below. 

The natural Euclidean norm on R" is denoted by I1" 112, so that  (R", 11" 112) is just 

1~. The Euclidean unit ball is denoted by B~ and { e l , . . . ,  e,} is the standard 

unit vector basis in R".  The Euclidean unit sphere in R"  (resp. in a subspace E 

of R")  is denoted by S "-1 (resp. SE), the rotation invariant normalized measure 

on S n-1 (resp. SE) is denoted by # s - - '  (resp. PsE). 

Let 1 < l < n. Denote by G,,,I the Grassmann manifold of all/-dimensional 

subspaces of R n with the Haar measure h,,/. Fix 0 < 7 < 1. For a family of 

properties M = {M"}  of 7n-dimensional spaces we say that  M is satisfied for 

a random subspace, if there exists 0 < 6 < 1 such that 

h,,,-tn{E G G,,,7,, [ E has M,,} >_ 1 - 6", 

for every n = 1,2, . . . .  The notion of a random quotient is defined by an analo- 

gous condition via "the duality between subspaces and quotients". For detailed 
information about random phenomena and related measure concentration phe- 

nomena we refer the reader to [M-S]. 

For an integer m, by O(m) we denote the orthogonal group acting on R m and, 

by hm, the normalized Haar measure on O(rn). In the integral notation we shall 

write dU instead of dh,,(U). If ~ is a subgroup of O(rn) then, unless stated 

otherwise, we denote by he the normalized Haar measure on ~, and we shall use 

the integral notation deW for dh¢(W). 
Let (X, II " [Ix) be a finite-dimensional Banach space. The unit ball of X is 

denoted by B x. Let I" 12 be a Euclidean norm on X and let (.,-) be the associated 

inner product. For an orthogonal projection P on (X, ]. [2), consider the norm 

][" liP(x) on P(Z)  defined by 

(1.1) [lyHe(x)=inf{[[y+z[[x l z E k e r P }  for yGP(X) .  
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Clearly, (P(X), ][. [[P(X)) is a quotient space of X, with the quotient map P, 
and conversely, every quotient of X can be identified with a space of this form. 

If X and Y are Banach spaces with dim X = dim Y then the (Banach- 

Mazur) distance between X and Y is given by 

d(X, Y) = inf {IITII l iT- '  II I T :  X --, Y is an isomorphism}. 

For any linear operator u : l~ --, X, the set u(B~) is called an ellipsoid on X. 

Any ellipsoid on X determines a Euclidean norm on X, for which it serves as a 

unit ball. Conversely, any Euclidean norm on X is obtained this way. 

We will often need the concept of volume in finite-dimensional Banach spaces, 

with respect to a given inner product. The volume of a convex body K in such a 

space X is defined by the identification of X with R n via the inner product and 

by the normalized Lebesgue measure of K under this identification. Sometimes 

we will write volnK, to emphasize the dimension of the space. Clearly, for 

two convex bodies K1,K2 C X ,  the ratio of volumes, vol K 1 / v o l / ( 2 ,  does not 

depend on the initial choice of the inner product. For more detailed information 

on volumes, related inequalities and their use in the Banach space theory we 

refer the reader to [P.2]. 

It is well-known (cf. e.g. IT], Section 15) that for any finite-dimensional Banach 

space X there is the (unique) ellipsoid £ C B x  which has maximal volume among 

all ellipsoids contained in B x ,  and there is a (unique) ellipsoid £' D B x  which 

has minimal volume among all ellipsoids containing B x  (the so-called F. John 

ellipsoids). 
Throughout the paper, by a, al, etc. we denote universal constants, and by 

c = c(sl, s2, . . .  ), cl = cl(sl, s2, . . .  ), etc. constants which depend on parameters 

sl, s2, . . . .  Constants of both types may vary from context to context. Since all 

the results of the paper are about isomorphic and asymptotic behaviour, we 

may (and shall) adopt the convention that numbers like an,  #n, etc., when 

representing dimensions of linear spaces, are positive integers. 

All the results of this paper can be carried over to the complex case. It requires 

some standard modifications such as identifying complex n-dimensional bodies 

with 2n-dimensional real bodies, and replacing the orthogonal group O(n) by 

the unitary group H(n). 

2. Distances Between Random Quotients Finite Dimensional Banach 

Spaces 

In this section we discuss the space R n with an arbitrary norm I1" II and we denote 

this space by X. To emphasize the dimension, the unit ball of X is denoted by 
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B,.  Recall that  the norm from 12 is denoted by l[ " If2, the Euclidean unit ball 

is denoted by B 2 and {e l , . . .  , e,} denotes the standard unit vector basis in R".  

For any Banach space Y = (R", ][-[[Y), ix,y : X ---* Y denotes the formal identity 

operator. If X = ft, (resp. Y = lP,), we denote ix,y by i,,,y (resp. ix,p). 
Let 1 < k < n. By R k C R" we denote span{e , , . . .  ,e~}. By L(R k) we denote 

the space of all linear operators on R k. For every (n - k)-dimensional subspace 

E of R"  by PE we denote the orthogonal projection on E ±. For every (n - k)- 

dimensional subspace E of R",  which does not intersect R k, by QE : R"  --+ R k 

we denote the projection onto R k with the kernel E. 

By QE(X) we denote R k with the norm for which the unit ball is QE(B,). 
That  is, IIyIIQ~(x) = inf{]ly + zll [ z 6 E}, for y 6 R k. In particular, in this 
section we will identify the quotient space X / E  (where E CI R k = {0}) with 

QE(X). 
For 1 < l < k < n set 

(2.1) Vi,k = ~,k(X)  = sup inf 
EEG.,n-~ FEG.,.-I 

FDE 

Also, for E 6 G , , , - ~  set 

Define 

( vollPF(B,)/vol tPF(B2.)) '/' . 

( volk2{T l i lT :  I]~ --, QE(X)II  < 1}'~ '/k' 
= vol ,{r i ) " 

(2.2) Wk = W~(X) = sup f(E). 
EEG.,.-h 

The quantity ~,k(X) is closely related to the notion of the volume ratio num- 

bers of operators, which will be of importance later on. Recall ([Mas]) that  if 

r = (R", II" IIv) then for u : X -~ r and 1 < j < n, we set 

(2.3) vrj(u) = sup (vol j(PEuBx)/vol jPEBy) 1/j . 
EEGn,n-j 

For Y = 12, the above definition coincides with the one introduced in [M-P.2] and 

discussed a/so in [P-T]. It is easy to see that  

(2.4) ~ ,k(X)  -1 = inf vr z(PEi2,xIE'), 
EEG.,.-h 

where PEi2,x I E'L is an operator acting from (E l ,  I1" 112) to the quotient PE(X) = 
( E± ,  ][" ][PE(x)). Moreover, Vk,k(X) = vrk(ix,2), so in particular, Vm,m(X) _< 

V~,k(X), for 1 < k < m _< n (cf. [P-T]). 
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Finally, we require an invariant related to so-called Dvoretzky-Rogers factor- 

ization: 

(2.5) = x ( x )  = Ilil,x : t~ ~ Xll Il ixa : x -- , / I l l .  

The following fact is a reformulation of one of the main technical tools in 

[Sz.1]. 

FACT I: Let 0 < 7 < a < 1. There is cl = c1(a,7)  such that a random 

subspace E E G,,,O-~),, has the property: 

(A) The operator QE I E J- : E J- --* R ~" has at most 7n s-numbers larger than 

e l .  

As an immediate consequence of property (A) one has 

LEMMA 2.1: Let E E G,,,(1-~), satisfy (A). There exists an orthogonal pro- 

jection P' e L(R ¢'") with rank P' >_ (a - 7 )"  such that 

t 2 lip QE" z. --, l~.ll _< e,,  

where c, = c , (a , - r )  is a constant from (A). 

FACT II: Let 0 < 7 < a < 1. There is c2 = c2(a) and e = e(7) > 0 such that  

a random subspace E E Gn,(l-a)n has the property: 

(B) IIQEedl~ < c2, for i = ~ ,  + 1 , ~ , +  2 , . . .  ,,t. 

(C) dist (QEei, span {QEe~ [ (1 - 7 ) "  -< k < i}) > e, for (1 - 7 ) "  < i _< n. 

The standard proof based on the measure concentration phenomenon (cf. [M-S]) 

is left to the reader. 

The above facts imply that  the set 

(2.6) ~" = {E e a , , o - a ) ,  [ E satisfies (A), (B), (C) } 

has the measure 

(2.7) h. ,o_=) . (~"  ) >__ 1 - ~", 

for some 0 < ~(a) < I. 

Let E E G. ,O_~) .  and E N R k = {0}. Consider the projection QE. Since QE 

is the identity on R ~" then it is fully determined by vectors QEei for i > an. 

Let us state the following obvious fact. 
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FACT III: The distribution of sets {QEei [ an < i < n} E R ~'n x . . .  x R ~'n is 

rotation invariant. That is, 

(D) Let Di C R an, for an < i < n, and let V E O(n). Then 

hn,0-~)n ({E E Gn,O-a)n ] Qv(E)ei E Di for an < i < n}) 

~--hn,(l_cO n ({E E Gn,(l_cOn [ QEei E Di for an  < i _< n}) .  

Random constructions presented in this section depend on measure estimates 

done for a fixed single operator. They axe stated in the technical proposition 

which follows. These estimates depend on parameters a,  fl and fl' satisfying 

0 < ~ < /~' < a < 1 and we present below two most important versions. The 

first admits fl and fl' arbitrarily close to ¢r; in this ease however we require that 

the operator has only relatively few s-numbers smaller than or equal to 1. The 

second version works for an operator which has many (up to a half) s-numbers 

smaller than or equal to 1, but  then fl and 8'  are required to be smaller than 

PROPOSITION 2.2: Let X b e  a n  n-dimensional Banach space. Let 0 < ~ < 1 

and let A > O. Let E,o E Gn,(~-~,)n, with Eo O R ~ = {0}, satisfy (.4) and let 

Y,~,, = QEo(X). 
(i) 

Let 0 < ~ < fl~ < a and let 7 = min ((a  - fl~)/4, 1 - a). There exist c = 

c(a, ~, fl') such that for every operator T E L(R =n) which has at least (1 - 27)n 

s-numbers larger than or equal to 1 we have 

(2.8) hn,(1-~,),~ ({E e Y" I IITQE: l~ ~ Y,,,,II -< A}) _< (cAVa,,,a,,O "ran2 . 

(ii) 
Let 0 < /~ < ~' < a /2  and let 7 = min ( ( a /2  - fl ')/2, 1 - a).  There exist 

c = c(a,/~, fl') such that (2.8) holds for every operator T ~ L(R ~n) which has at 

least an~2 s-numbers larger than or equal to I. 

We postpone the proof of the proposition to the last section. 

The following lemma is a standard ingredient. 

LEMMA 2.3: Let X be an n-dimensional Banach space. Let 0 < 7 < a < 1. 

Let E0 6 G, , (1 -a ) ,  satisfy (.4) and let Y~,  = QEo(X). For A > 0 set 

TA = {T e L(R ~") I lIT: Y.nll < A and 

T has at most 27n s-numbers < 1}. 



136 P. MANKIEWICZ AND N. TOMCZAK-JAEGERMANN Isr. J. Math. 

Then for any b > 0, TA admits a bA-net Af in the operator norm from I~,, into 

Ya,,, with the cardinality 

l.,V'l < ( W a , , I b )  ( ~ " ) '  • 

The standard proof of the lemma is based on the comparison of volumes argu- 

ment (cf. e.g. [G.1], also [T] Section 38) and follows directly from the definition 

of Wa, .  

T H E O R E M  2 . 4 :  Let X be an n-dimensional Banach space. Let 0 < tr < 1. Let 

Eo E G, ,o -a ) , ,  satisfy (A)  and let Ya ,  = QEo(X).  

(i) Let 0 < ~ < ~' < a and let 7 = min ((a - ~ ' ) /4 ,1  - a). A random subspace 

E E G , , o - a ) ,  has the property: for every operator T E L(R a") which has at 

most  27n s-numbers sma/ler than 1 we have 

(2.9) IITQE: : .  --" Ya,, l l  >_ cw::'/7#v;:#,., 
where c = c(a, ~, ~') > O. 

(ii) Let 0 < ~ < ~' < a /2 and let 7 = min ( (a /2  - fl') /2 ,1  - a). Then a random 

subspace E E G,,,(1-a),, satisfies (2.9) for every operator T E L(R a ' )  which has 

at most  a n / 2  s-numbers stun/let than 1. 

Proof: Set 
A = _I , ~ _  , , ,  ,-a'/7# (c3v#.,#,.)-i 

2 L'~c2 vv an) 

where c2 and ca are constants from (B) and Proposition 2.2 respectively. Let TA 

be the set of operators defined in Lemma 2.3. For T ETA let ~T be the set from 

the conclusion of Proposition 2.2. Let AF be an (A/2c2)-net in TA of minima/ 

cardina/ity. 
B 2 Therefore, if T E For arbitrary E E .~" we have, by (B), QE(B~)  C c2 a,," 

L(R a") then 

IITQE : t~ --, Ya.II < c211T : l~ ,  --, Ya.II. 

Thus for every T E TA there is T'  E .hf such that  

IITQE : l~ ---* Ya,*l] >- IIT'QE : 1~ --~ Yaa]l - ]](T - T' )QE : l~ ---* Yan]l 

>IIT,  Q E .  1 _ . I .  --+ Y,~,,}I - c2)l( T - T ' ) :  l~.  --+ Y~,,,I[ 

> IIT'QE: l~ -* Yanii - A/2.  
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Fix E • ~ \ UTeAt ~CT" The previous calculation shows that  

HTQE : l l  ~ Y~,,H >- A/2,  

for every T • TA. Also, if T q~ TA then liT : l~n - ,  Y~,,II > A and hence 

I]TQE : IX= ~ Y~-II > A. 

Finally observe that  (2.7), (2.8) and Lemma 2.3 easily imply 

h,,,(1-a)n (.T'\ U )CTi >- I-~n-(1/2)'ra"2, 
TeAt / 

for some 0 < / i  < 1, which completes the proof. 

Our next step will be to consider operators acting between (different) quotients 

of X. The norms of such operators do not depend on a specific (isometric) 

representation of X in R",  while the parameter V~n,/~,,,(X) does. This yields 

a necessity of a normalization condition. The most convenient one is Ilix,211 = 

[[ix,2 : X ~ 121] = 1. Note that  with this normalization we have to(X) = [[il,x : 

l~ ~ X H. The following theorem is an immediate consequence of 

THEOREM 2.5: Let X be an n-dimensional Banach space with [[ix,2l[ = 1 and 

let 0 < 4 < 1. Let Eo E G,,O_~),, satisfy (.4) and let Y , ,  = QEo(X). 

(i) Let 0 < fl < 8' < a and let 7 = min ((a - fl ')/4, 1 - a). A random subspace 

E E G,,,(1-~), has the property: for every operator T q L(R ~n) which has at 

most 27n s-numbers stun/let than 1 we have 

(2.10) I[TQE : X Y .II -> 

where c = c(4 ,  8 ,  8')  > 0. 
(ii) Let 0 < ~ < 8' < a /2  and let 7 = rain ((4/2 - 8 ' ) /2,  1 - a). Then a random 

subspace E E Gn,(1-c,),, satisfies (2.10) for every operator T E L(R"")  which 

has at most 4n /2  s-numbers smaller than 1. 

The results we proved so far can be applied for estimating the distance between 

random an-dimensional quotients of an n-dimensional space X. We prove two 

different versions of such estimates. We start with a theorem of general interest 

which in many particular cases gives the asymptotically best lower estimate. 
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THEOREM 2.6: Let X be an n-dimensional Banach space with Ilix,211 = 1. Let 

0 < fl < fl' < or/2 < 1/2 and let 7 = rain ((ix/2 - ~ ') /2,  1 -- or). There exist 

E l ,  E2 E G.,O-~). such that 

(2.11) d ( Q E t ( X ) , Q E , ( X ) )  > ctc(X)-2W:2na2/'taV;n2,a,n, 

where c = c(tr,#,fl*) > O. In fact, (2.11) is satisfied for random subspaces 

Ex, E2 E G,,(1-~),,. 

Proof." Theorem 2.5 (ii) implies that  for any i , j  = 1,2, i # j ,  the subset Bi,j of 

G,,.O_~),, x G, , ,0_,0,  defined by 

Bi,j = {(Ei, Ei)l liT: QE,(X) ~ QE~ (X)ll >_ cW;f/ av;l#,. 
for every T E L(R an) which has 

at most an~2 s-numbers < 1} 

has measure larger than 1 - 6 n, for some 0 < 8 < 1. Clearly any isomorphism 

T E L(R '~") can be normalized so that  both T and T -1 have at most (rn/2 

s-numbers < 1. Therefore, by Theorem 2.5, for any (El ,E2)  E B1,2 f3 B2,x and 

any T, both norms liT: QEt (X)  ~ QE,(X)I[ and liT -1 : QE2(X) --+ QE,(X)II 
admit suitable lower estimates. This obviously concludes the proof. = 

We pass now to the distance estimate in terms of arbitrary/~ </~ '  < tx, which 

is important for further applications. In this case we cannot apply Theorem 2.5 

simultaneously for both T and T -1. The control of the norm of one of these 

operators is achieved by the following simple lemma. 

LEMMA 2.7: Let X be an n-dimensional Banach space and let 0 < 7 < ot < 1. 

Let El ,  E2 E : ' .  For every operator T E L(R ~ ' )  which has at least 27n s- 

numbers larger than or equal to 1 we have 

lIT: QE~(X) -~ QE,(X)[[ ~ c,¢(X) -x, 

where c = c(a, 7) > 0. 

Proof." Since E2 satisfies (A), Lemma 2.1 yields that  for some orthogonal pro- 

jection P • L(R ~ ' )  with rank P > (a  - 7)n we have 

IIPQE2 : 12n ~ l~nl[ <_ Cl, 

w h e r e  c 1 is 8/t in (A). 



Vol. 75, 1991 H O M O G E N E O U S  BANACH SPACE 139 

Fix T E L(R ~')  with at least 27n s-numbers larger than or equal to 1. Then 

we have 

2 (2.12) liT: QEx(X) --* QE,(X)[[ _> c~(X)-II[PQE, T : I~, ---, lo, ll, 

w h e r e  = = ( C l ) - I .  

Denote the operator PQE2T by R. Observe that R has at least 7n s-numbers 

larger than or equal to 1, and so its Hilbert-Schmidt norm satisfies HS(R)  >_ 

(Tn) I/~. Thus 

Itn:  t~,, --, t2.11 = m~{t lRe i l l2  I i = 1 , . . .  , a n ]  

(2.13) ~- (an) -1/2 IIRe~lll 
\ i= 1 

= > 

We complete the proof combining the last estimate with (2.12). 

THEOREM 2.8: Let X be an n-dimensional Banach space with Hix,2H = 1. 

Let 0 < ~ < fl' < a < 1 and let 7 = m i n ( ( a - / 3 ' ) / 4 , 1 - a ) .  There exist 

El,E2 E G,,(1-~), such that 

(2.14) d(QEI(X),QE2(X)) > c~(X)-2W~n~2/'Y#V~#,,, 

where c = c(~,fl, fl') > O. /I2 fact, (2.14) is satisfied for random subspaces 

El,E2 E G,,O_~),. 

An easy proof based on the previous lemma and Theorem 2.5 is left to the reader. 

3. Control l ing ~(X) and W~.(X). The Original Gluskin  T h e o r e m  

In Section 2 we considered a space X - (R", 11" II), together with the fixed 
(natural) Euclidean norm. This norm was also used to define all parameters 

of X involved in the estimates. To consider corresponding parameters for an 

arbitrary n-dimensional Banach space X, we need to identify the space with 

R ' ,  or, what amounts to the same, to define on X a Euclidean norm. The 

aim of this section is to show that given a fiuite-dimensional Banach space, a 

suitable proportional dimensional quotient admits a Euclidean norm for which 

the parameters ~(.) and Wk(.) admit universal upper bounds. This will allow 

us to eliminate ~(-) and W~(-) from the lower estimates of Section 2, and get 

meaningful inequalities for a large class of finite-dimensional Banach spaces. 
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Results of this section are based on a combination of recent deep techniques 

in the local theory of Banach spaces: the approach of Milman for finding large 

quotients with bounded volume ratio, and a random selection method for finding 

large quotients with bounded ~, developed by Bourgain, Szarek and Talagrand. 

We recall the notion of the volume ratio, introduced in [Sz-T]. Let Y be a 
k-dimensional Banach space with the unit bail By. Let E C By be the ellipsoid 

of maximal volume contained in By. The volume ratio of Y, vr(Y), is defined 

by 

(3.1) vr (Y)  = ( vol B y / v o l  E) 1/k . 

The following lemma is well known to specialists. 

LEMMA 3.1: Let Y be a k-dimensional Banach space, let 1 < I < k and let Z 

be an l-dimensional quotient of Y. Then 

/k \ 1/t 
vr(Z) <_ ~l ) vr (Y) ' / ' .  

Proof." Let £ C By be the ellipsoid of maximal volume contained in By. Let 

Q : Y ~ Z denote the quotient map. Without loss of generality we may identify 
Q with an orthogonal projection in Y (in the Euclidean structure given by E) 

and Z with the range of Q. Denote kerQ = E. Then we have (cf. e.g. [P.2], 

Chapter 8) 

( volq(By)  ( vol enBy)  < ( volB_  . 
vol 

(3.2) 

Since obviously E A £ C E A By,  by (3.2) and (3.1) we get 

( vol q(By)~ 1/' '/' ( vol Bz.~ 1/' 
(3.3) vr (g) _< ~o1" Q--~ ) -<(kl) vol E )  ' 

which completes the proof, u 

The relevance of the bounded volume ratio property in the present context 

lies in the fact that this property allows a good control of the parameter W~. 
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PROPOSITION 3.2: Let Y be a k-dimensional Banach space and let II- 112 be an 

arbitrary Euclidean norm on Y .  Let 1 < l < k. Then 

('l)'" w ~ ( r )  < ,~ vr (y)~/ t ,  

where a > 1 is a universal constant. 

Proof." We shall show that any/-dimensional Banach space F = (R t, I1" II) satisfies 

(3.4) ( vol {T I lIT : l~ ~ F[I < 1 } ) ' / e  
vol {T I l iT: q - '  FII < U < vr (F). 

This will imply the conclusion by the definition of W t ( Y )  and Lemma 3.1. To 
prove (3.4) observe first that 

vol {T [HT: l~ ~ FI[ < 1} = ( vol BF)  t.  

On the other hand, let £ C BF be the ellipsoid of maximal volume contained in 
BF,  and let H denote F with the Euclidean structure determined by £. Then 

{T I I]T: l~ ~ F[I < 1} D {T [ [IT:l~ ~ H[I < 1}. 

Thus 

vol {T I]l T :  l~ --* F H < 1} :2_ vol {T I I] T : /~  ~ HII -< 1} 

vol E ~! 
--- vol B y /  vol {T I liT: l~ --, l~ll < 1} 

> (a' vol £) t , 

where a' > 0 is a universal constant. The last inequality follows from the well 
known estimate 

vol {T l i lT:  l~ --, l~l I _< 1} >_ (a' vol B~)' ,  

where a' > 0 is a universal constant (cf. e.g. [G.1], also IT] Section 38). Com- 
bining these estimates we get (3.4). u 



142 P. MANKIEWICZ AND N. TOMCZAK-JAEGERMANN Isr. J. Math. 

In the sequel we shall use a fundamental result of Milman [Mi] in the important 

refined version due to Pisier [P.1]. It requires additional notions of Gelfand, 

Kolmogorov and entropy numbers. 

Let X and Y be Banach spaces and let u : X ~ Y be an operator. For 

m = 1, 2 , . . .  define the m-th Gelfand number by 

cm(u) = inf{llu I EI[ [ E C X, codim E < m}, 

and the m-th Kolmogorov number by 

din(u) = inf{llQEUll I QE:  r --* F I E  is the quotient map, d i m e  < m).  

Define the m-th entropy number by 

e, , (u)  = inf ¢ I 3{y i}~ ' - '  C Y, u ( B x )  C U (yi + e B y )  . 
i=1 

Moreover if Y = t2. and H c t2,, by VH: H ~ u*(H) and (u-1)H : H ~ u - ' ( H )  

denote the restriction of u* and u -1 respectively. Set 

2 ~.,(u) = supIc,,,((,,H)*) I H c t,,}, 

& ( U  -1) = sup{dm( (u - ' )H)  I H C l~}, 

~,,,(u) = sup{~,,,((,,.)*) I n c t~}. 

Now the result states. 

THEOREM 3.3: Let X be an n-dimensional Banach space. 

isomorphism u : X ~ 12 such that for all 1 < m < n one has 

(3.5) dm(u -1)  < a n / m  and c, ,(u) < an~re. 

In particular, max ( e m ( u ) , e m ( u - ' ) )  <_ a 'n lm .  

Moreover u can be taken to additionally satisfy 

max (~..,(u),dm(u-'),~ra(u)) < a(nlm) ~ (3.6) 

Here a > O, d > 0 are universal constants. 

There exists an 

for l <_m <_n. 

The proof of Theorem 3.3 can be found in [P.I] and [P.2] Theorem 7.13. The 
moreover part  is discussed (in the dual form) in [P.I] Corollary 2.8. Estimates 

for the entropy numbers follow from Carl's inequality (d.  [P.2]). 
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Further on we will require an inequality relating the existence of Euclidean 

sections of a given finite-dimensional Banach space to some volume estimates. 

In the preliminary version of this paper [M-T.1] we used Szarek's volume ratio 

result; and in [M-T.2] we used the inequality from [P-T]. M. Junge has recently 

informed us about the following strengthening of the latter inequality. Recall 

that  the volume ratio numbers were defined in (2.3). 

PROPOSITION 3.4: Let ~ > 1. Let X be an n-dimensional Banach space and 

let w : l~ ~ X be an operator. For every 1 < m < n / ( one has 

d¢m(w) < c(nlm) 2 vrm(w), 

where c = c((). 

Proof." Let u : X ~ l~' be an isomorphism as in Theorem 3.3. Fix m and let 

m' = (~ - 1)ra. Using well-known additivity property of Kolmogorov numbers 

and some properties of volume ratio numbers ([Mas], [P-T]) we get 

dora(w) < dm,(u-1)dm(uW) < dm,(u -1) Vrm(UW) 
< dra,(u -1) Vrra(U) Vrm(W) _< dm,(u-1)2em(U) vrm(w) 
_< c(n/m) ~ vrm(w), 

completing the proof. El 

Now we come to the main subject of this section which is concerned with 
quotients having simultaneously bounded volume ratio and uniformly bounded 

t~. This is described in the following proposition. 

PROPOSITION 3.5: Let X be an n-dimensionM Banach space. Let 0 < A < 1. 

There exists a quotient of X ,  say Y ,  with dim Y = k > An, and a Euclidean 

norm [-15 on Y such that 

(3.7) Ilix,2 : x --, ( x ,  I" 15)11 = 1 

and 

(3.8) vr (Y)  < c ~ d  ,~(Y) _< C, 

where C = C(A). 
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Moreover, if]I'll2 denotes the Euclidean norm on X determined by the ellipsoid 
M minimal volume contaJning the unit ball of X ,  and i f  Y = P(X) ,  for some 

orthogonal projection P, then the norm [. [2 can be chosen to satisfy 

(3.9) (1/c)11y112 < ly12 < cllyll2 for y • Y, 

where c = C( ) O. 

Remark: The functions C(~) and c() 0 tend to infinity, as ~ ~ 1. The proof 

below shows that they can be taken as polynomials in (1 - )0 -1 . 

The upper estimate for it(Y) stated in the proposition is clearly equivalent to 

the existence of an orthonormal basis { e l , . . . ,  ek} in (Y,I" [2) such that 

(3.10) lY[2 ~ IlYll ~ C ~ '  It, I for y : ~ t , ~ ,  ~ Y. 
i i 

Proo['. Set $ = A 1/s. We start by finding a quotient of X with a bounded 

volume ratio. Let u : X ~ I~ be an isomorphism constructed in Theorem 3.3 

satisfying (3.6). Let m = (1 - *)n. Then d,,(u -1) < c', where c' = c'(A). 

From the definition of dm this means that there exists a quotient space of X,  

say F ,  with d i m F  = n - m, and the quotient map Q : X ~ F such that 

IIQu-1]l < dm(u -1) < c'. Consider an ellipsoid on F defined by £ = Qu-I(B2).  

Then 

(3.11) (1/c')E c Q(Bx)  = Be.  

Moreover, consider the operator wF : F ---* 12,_m such that wFQ = PEu, where 

E -- u(ker Q) and PE is the orthogonal projection with the kernel E. Then (3.6) 

implies that WE satisfies 

em(WF) < a ( - /m)  2 = ~", 

where c" = c"() 0. A standard covering argument (cf. [P.2] (7.40) and (7.41)) 

shows that 

(vol BF/vol  S) 1/¢"-~) < 2em(WF) < 2c". 

Combining with (3.11) we get 

(3.12) v r ( F )  < ( vol B E / v o l  (1/c')£) '/("-m) <_ 2c'c" = C. 
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Now, let I1" 112 be the Euclidean norm on X determined by the ellipsoid of 
minimal volume containing the unit ball of X.  As usual, we may assume that 

F = Q(X), for some orthogonal projection Q. To prove the estimate for ~ we 
need to construct further quotients. 

Let us recall a weU-known and important property of the minimal volume el- 

lipsoid (d.  e.g. [T] Proposition 15.11). It says that for any orthogonal projection 

R of rank k we have 

(3.13) tlR: x ~ (x,  I1" 1t2)II > (k/,O 'z2. 

In particular, if S is an orthogonal projection in F = Q(X) of rank k, then 

IIS: F --4 (F, I1" 112)II > IISQ: X --, (F, I1" 112)II > (k /n)  ~/2. 

This allows us to construct, by [Sz-Ta] Corollary 5, a sequence of s vectors 

el,... ,e8 in F, with s = 8dimF = 62n such that llc~llF = 1, for i = 1,... ,s 

and 

(3.14) Z It, I > II ~ tie, l[2 >- c"' It,I 2 for (td ~ n' ,  
i i 

where c"' = c"(A) > 0. 

Let Y = span {ei}i<_s, with the quotient norm from F,  say [[" Ilv, given by the 

orthogonal projection R from F onto Y. Clearly, Y = RQ(X) is also a quotient 

of X.  We have 

(3.15) IlYlb =llnYll2 ~inf{llY+fllF I f e k e r R } = l [ ~ l l r  for y e Y .  

Moreover, Ile, llv ~ I for i = 1 , . . .  ,s. Finally, define the norm 1" 12 on Y by 

= for (ti) E R  °, 
i 

where the normalization factor D is chosen so that (3.7) is satisfied. Combining 

with (3.14) and (3.15) we get (3.10). Finally, using Lemma 3.1 we complete 

(3.8). 
Notice that (3.14) immediately yields that the norm I" 12 defined in (3.16) 

satisfies the upper estimate in (3.9). To get the norm satisfying also the lower 
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estimate we need to replace, in the above construction, vectors (ei) with vectors 

e~ , . . . ,  e~ such that 

(3.17) ( l / c ' )  Itil 2 < II ~ tie~ll2 < c' Itil 2 , 
i 

for all (ti) E R k, where c' = c'(&). The approach from [B-Sz], Lemmas C and D, 

shows that there exist an orthogonal projection S : F ~ F (with the norm I1" 112) 
and a subset ~r C { 1 , . . . ,  s} with I~l ___ as = An such that the vectors e~ = Sei 
for i E a satisfy (3.17). The proof of the moreover part  of the proposition is then 

concluded by setting Y = span {e~}i~,,, with the quotient norm defined by the 

orthogonal projection and repeating the argument above. [] 

The following theorem is a generalization and an "abstract form" of the result 

of Gluskin [G.1]. 

THEOREM 3.6: Let 0 < a < 1. Let X be an n-dimensiona/Banach space, and 

let I1" 112 be the Euclidean norm on X determined by the ellipsoid of minima/ 

volume containing the unit ba/l of X .  For any 0 < fl < #' < a/2,  X has two 
an-dimensional quotients, say F1 and F2, such that 

(3.18) d(Vl, F2) >_ cV~-~a,,(X), 
where V~.,~,. is dealed by (2.1) with r~p~ct to I1" 112 a n d  c = c ( a , ~ , ~ ' )  > 0. 

Proof: Set ~ = (1 + a ) / 2  and m = ~n. Let Y be an m-dimensional quotient of 

X and let [. 12 be the Euclidean norm on Y as in Proposition 3.5. Set a l  = a/~,  

[31 = fl/~ and 81 = fl '/~ • Applying Theorem 2.6 to Y and O < fll < a l / 2  and 

7 = ~ n  ( ( a ~ / 2  - ~ 1 ) / 2 , 1  - a~)  we  get  

.',-2 ~yx d(F1,F2) >_c vtj,,~,~l~k ), 

where d = d(a,/~,/~') > 0 and f'pt,~,#Im is defined by (Z1) with respect to the 

norm [. 12- Now, it sul~ees to observe that this combined with (3.9) and the 

definitions of ax, fll and fl~ imply (3.18). [] 

It can be shown that for 1 < p _< 2 the volume ratio numbers of spaces lP,,, 

with respect to the natural Euchdean norm, satisfy 

(3.19) ~,~(l~) < V~,k(IP,) < ak 1/2-11", 

for 1 < l < k < n, where a is a universal constant (cf.e.g[P-T] (1.3)). Therefore 
Theorem 3.6 yields an immediate corollary, which for p = 1 and a = 1/3 is the 

original statement of Gluskin's theorem [G.1]. 



Vol. 75, 1991 HOMOGENEOUS BANACH SPACE 147 

COROLLARY 3.7: Let 1 <_ p < 2. For every 0 < a 

an-dimensionM quotients, say Fp, F~ such that 

d(F,,F;) >_ c,e/,- ' ,  

< 1 the space I p has 

where c = c( a ) > O. 

4. A Solution of  the Finite-Dimensional Version of  the Homogeneous 
Spaces Problem and Related Results 

To make the results of this section more transparent and to avoid repetitions, 

for every n-dimensional Banach space X and for every 1 _< k < n set 

(4.1) K ( X , k )  = sup{ d (FI,F2)},  

where the supremum is taken over all pairs of k-dimensional quotients of X. Simi- 

laxly, define K*(X,  k) to be the diameter of the set of all k-dimensional subspaces 

of X. It is obvious by the duality that  K ( X ,  k) = K*(X*, k). The following result 

is a solution of the finite-dimensional homogeneous spaces problem. 

THEOREM 4.1: Let 0 < a < 1 and let X be an n-dimensionaJ Banach space. 

Let K = m i n ( K ( X ,  an), K*(X, an)). Then 

d(X, l~)  < { cK2 i f 2 /3  < a < 1, 
- cK s12 i f0  < a < 2/3, 

w h e r e  c = c ( a ) .  

The proof of the theorem requires the following proposition, which is based on 

an argument by Milman and Pisier [M-P.1] (cf. also [B.2]). 

THEOREM 4.2: Let 0 < ~ < ~ < 1. Let Z be an n-dimensional space such that 

every ~n-dimensional subspace Z1 of Z contains a subspace H with dim H =/~n 

such that 

d( ~'[,/~im H) <~ D, 

t'or some D >_ 1. Then/'or every 0 < rl < 1 + 6 - ~ there exists a subspace S of 

Z with d i m s  = (1 + 6 - ~ - rl)n such that 

d(s, &m S) <- eD, 
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where c = c(~, 6, 7). 

Proof." Clearly it is enough to prove the proposition for T} sumciently small. 

Therefore fix 0 < ~ < 2 rain(6,1 - ~) (and so, smaller than 1 + 6 - ~). Let 

u : Z --+ l~ be the isomorphism constructed in Theorem 3.3 which satisfies (3.6). 

Set u -1 = w. Since c,,/2(u) <_ a/~, where a is a universal constant, there is a 

(1  - ~/2)n-dimensional subspace F C Z such that  

(4.2) Itu IF:  F ~ 1~11 <_ a/,1. 

Let I:1 C F be a subspace with dimY1 = 6n such that  d(Y~, l~,) _< D. Set 

G1 = u(Y1) C 12, and let tot : G1 ~ Y, be the restriction of w. Then 

dm(wl) < din(w) _< a (n /m)  2, 

for every 1 _< ra < n. Observe that  wl is an operator acting between spaces 

D-isomorphic to Hilbert spaces and that  for such operators the Kolmogorov 

numbers and the Gelfand numbers coincide (up to a constant D). In particular, 

era(w1) <_ D d,,,(wl). This yields the existence of a subspace H1 C G~ with 

dim H1 = (6 - ~/2)n such that  

IIw I H ~ :  H~ --, FII = IIw~ I H~ : HI - ,  Y~II < cD, 

where c = c(~, 7/). 

The above argument leads to the inductive construction of mutually orthogonal 

subspaces H1, H2 , . . .  of l~ and subspaces F0 = F D F1 D " .  such that  w(Hj) C 
Fj-1, 

]]w I Hj: Hj -~ FII < cD, 

and dim Hj = (6 - T//2)n, for j = I, 2,.... In the s-th step set 

s 8 

n = ~((6~) Hi) ~) n F and let t, = dimn = dimF - dim6D ~, 
j= l  j= l  

for 8 = 0, 1, 2, . . . .  Consider the least integer k such that  l~ < (n. Since Ik-1 >_ ~n 

then 

k < 4/6. 

If l~ < (~ - (6 - T//2))n, let Hk+l = {0} and end the construction. Otherwise, 

decrease the dimension of the space Hk to have l~ = ~n. Using the argument 

above for the last time construct a subspace Hk+l C (~)~=1 Hi)  ± such that  

[lw ]Hk+, : Hk+, --, Fll -< cD 

and dimHk+! = (6 - ~/2)n. 



%/O1. 75, 1991 HOMOGENEOUS BANACH SPACE 149 

Set 

Observe that  

k+l 

j = l  

dim S ~ dim F - (~ - (5 - y//2))n = (1 + 6 - 7 / -  ~)n. 

Moreover, 

[[w[S:S~F[[<- ( ~-~[[wlHi:Hi''*F[[2)kj=, 

_< (k + I)~12cD _< (c'/VT)m. 

~/2 

Combining the last inequality with (4.2) we get 

d(S,/2ira 5;) < c"D. 

This completes the proof. 

Now we are ready for the 

P roo f  of  Theorem 4.1: Since d(X, l~,) d(X*, 2 = I ,) ,  it is clearly enough to prove 

the theorem in the "quotient setting", K = K(X, an). Assume first that  2/3 < 

o ~ < l .  

S e t ¢ = ( 1 - a ) / 6 .  S e t ~ = l - 4 ¢ a n d ~ = a - 3 c ,  s o t h a t 0 < ~ < a < ~ < l  

and l + g - ~  = a + ~  > a.  Fix an arbitrary quotient space X1 of X with 

dim X1 = ~n. By passing several times to suitable quotients of X1 we will show 

that  X1 admits a 6n-dimensional well-Euclidean quotient. 

Set A = 1 - 5~. Let Y be a quotient space of X1 with d i mY  = m = An, as 

constructed in Proposition 3.5. Let [-12 be the suitable Euclidean norm on Y, 

and let B2 denotes its unit ball. 

Set a l  = tr/A (note that  ~1 < 1). Let fl = e/A and fl' = ( ~ -  ~)/A, so that  

0 < ~ < /5' < a l  < 1. Let 7 = min ( ( a l - f l ' ) / 4 , 1 - a l ) .  Applying Theorem 

2.8 to Y, and combining the definition of K ,  (3.8), (2.14) and Proposition 3.2 

we get 

I --1 (4.3) K > c V~m,~,m(Y), 

where c' = c ' (a)  > 0. 
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By (2.4), there exists a quotient I"1 of Y, with dim ~ =/~ 'm,  such that 

- 1  Vt~,,,,~,,,(Y) = vrt~m(i2,Y, ), 

where i2,y, : (I"1, ]" 12) ~ Y~ is the formal identity operator and l" ]2 denotes the 
Euclidean norm on I"1 induced from Y. Set 61 = 6[A. By Proposition 3.4 we get 

d2am(i2,vt) < a Vram(i2,vt) < C K, 

where a > 1 is a universal constant and C = C(a) .  Since film - 2tim = 61 m, 
this means that there exists a 6ira-dimensional quotient G of ~ ,  of the form 
G = P'(Y1) = P(Y) ,  for some orthogonal projections P '  and P,  and with the 

(quotient) norm I1" IIG, such that 

IlzllG < CKIzlx for z •  G. 

By (3.7), lY12 -< Ilull for y • Y, and hence also Iz12 <_ Ilzlla for z • G (by the 
definition (2.1) of the quotient norm). Therefore 

d(G,l~x,, ) < C K ,  

where C = C(a) .  
The above argument shows by duality that every ~n-dimensional subspace 

Z = (X1)* of X* contains a subspace H = G* with d i m H  = 6n such that  

d(H,l~limH) < C K, 

Now use Proposition 4.2 with r / =  e. Let S be a subspace of w h e r e  C = C(a). 
X* such that 

(4.4) d(S,/~im s) < C'K, 

where C '  = C'(a) and 

d i m s  > (1 + 6 -  ~ -  t/)n = an.  

Therefore every t~n-dimensional subspace Z1 of X* satisfies 

lo,,) < K*(X*, an) d(S,/~im S) <- C'K2. d(Zl ,  2 

By IT] Proposition 26.2 the last estimate yields 

d(X, lZn) = d(X*,/2n) < ( l / a )  d(Z,,l~imZt) < C"K 2, 

where C °l = C"(a) .  This concludes the proof in the ease 2/3 < a < 1. 
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In the remaining case, when 0 < a < 2/3 , we let e = rain ( ( 1 - 3 a 1 2 ) / 6 ,  a/12) .  

Set ~ = 1 - tr /2 - 4e and $ = a / 2  - 3e. Then let )~ = 1 - a / 2  - 5e and let fl = e$ 

and 3' = (a /2  - e) /$ .  Now the proof goes exactly along the same lines, except 

that  we use Theorem 2.6 instead of Theorem 2.8. n 

A restatement of a particular case considered above estabhshes a lower es- 

t imate for the distance between subspaces or quotient spaces of a given finite- 

dimensional space in terms of the Euclidean distance of the space, thus comple- 

menting Theorem 3.6. 

COROLLARY 4.3: Let 0 < a < 2/3 and let X be an n-dimensional Banach 

space. Let K = m i n ( K ( X ,  a n ) , K * ( X ,  an)).  Then 

K > c d(X, l~) 2/3, 

where c = c(a) > O. 

It would be interesting to improve the above estimate to have K > c d(Y, l~), 

at least for some 0 < a < 2/3. There are easy examples that  the exponent 1 on 

the right hand side of this inequality is best possible. 

The following standard consequence of Theorem 4.1 is worth noting (cf. e.g. 

Proposition 26.1 in [T]). 

COROLLARY 4.4: Let 0 < a < 1, let 1 < k < art and let Y be an rt-dimensional 

Banach space. Let K = min(K(Y,  k), K*(Y,  k)). Then 

d(Y, 12,) < C K 2~l°g"/l°* k, 

where b = 3/2, i f 0  < a < 2/3 and b = 2, i f 2 / 3  < a < 1. 

It easily follows from the proof of Theorem 3.6 that if X has bounded volume 

ratio, then (3.18) holds for random quotients F1, F2 of X.  This is, in particular, 

the situation of Corollary 3.7, when Fr,  F~ are random quotients of I~. On the 

other  hand it seems that  for an arbitrary Banach space X,  random quotients of 

X do not necessarily satisfy (3.18). Therefore, in general case, it seems natural  to 

consider random quotients of a (non-random) quotient of X rather  than random 

quotients of X itself. In such a context one can prove the following interesting 

result. 
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THEOREM 4.5: Let 0 < a < 2/3. Let X be an n-dimensional Banach space, 

and let [[. ][~ be the Euclidean norm on X determined by the e11ipsoid of minimal 
volume containing the unit ball of X.  There exists a quotient Xl Of X with 
dimXa > (3/2)an such that for every A > 1 at least one of the following two 

conditions holds. 

(i) 
Random an-dimensional quotients F1, F2 of X1 satisfy 

(4.5) d(Fa,F~) >_ a.  

(ii) 
One has d( X l  , I~im Xl ) <_ cA 1/2. Moreover, a random tin-dimensional quo- 

tient F of X1 satisiqes 

(4.6) (1/Cl)11x112 < II~IIF < c211~112 for x E F, 

where c = c(a) and ClC2 = c A  112. 

For the proof of this result we refer the reader to [M-T.2] (el. also [M-T.1]). 

Let us note that  if a is small enough then c(tr) can be taken smaller than 1, 

making the conditions (i) and (ii) exclusive. 

5. P r o o f  of  Propos i t i on  2.2 

We present the postponed proof of Proposition 2.2. 

Proof." Denote the unit ball QE(Bn) in Yah by Ban. To describe both cases (i) 

and (ii) simultaneously, set r/equal to 27 in case (i) or to a/2 in case (ii). Fix an 

operator T E L(R ~'') satisfying the requirements of the proposition and observe 

that  without loss of generality we may and shall assume that  all s-numbers of T 

are distinct. Replacing T by ~T for a suitable choice of ~ < 1 we may assume 

that  T has exact!y r/n s-numbers smaller than 1. 

Fix F0 E .~'. Remember that  7 < 1 - a and observe that we clearly have 

(5.1) h. , (a_ . ) . ( {E ~ ~ I  [ITQE: t I - '  Y~.II <- A}) 

<_ h,({U e O(n) ] U(Fo) e ,T, TQv(fo)ei E ABe,,, 

for (1 - ~ ) n  < i < n}). 

By 7"/denote the group 

(5.2) ~ = { v  e o (n )  [ V I(R~'") ± = Id}. 
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Clearly 7"/is isomorphic to O(an). For k = 0, 1 , . . .  ,Tn - 1 and V • 7"/set 

.,4k ® V = {U • O(n) I V(Fo) • ~', TQVV(F,)ei • ABe,, 

for ( 1 - 7 ) n < i < n - k } ,  

and 

.,4 k ® V = {U E O(n) I U(Fo) E .F, TQvv(F,)en-} • ABe, n}. 

Before we go further let us note that  

(5.3) Qvu(fo) = VQu(Fo) V- ' ,  

for every V • 7"t and U • O(n). Indeed, it is enough to check this equality 

separately on R ~n and VU(Fo) (since R n is a direct sum of these subspaces). 

The set on the right hand side of (5.1) is A0 ® Id. From Fact III it follows that 

for every V • 7"l we have 

hn(Ak® Id)=fo X.4,®,ddU= fo XAn,®vdU. (-) (~) 

Integrating over V • 7"( we get by Fubini's theorem 

(5.4) h,(.Ak ® Id)=foCn)(fX.4.®vdnV)dU 
for k = O, 1 , . . . , T n -  1. 

We will prove that  the following inequality holds for all U • O(n) such that 

U(Fo) • U and for k = 0 , 1 , . . .  ,Tn - 1, 

(5.5) ~ X.a,®vd~tV < (cc-lAV,,~,,,n(X))'n ~ x.A,+,®vdT.tV, 

where ¢ satisfies condition (C) and c = c(ot,/3). 

Assuming (5.5) we can easily complete the proof of Proposition 2.2 as follows. 

By (5.4) and (5.5) we get 

h.(.4o® 'd) <_(ce-'AY,.,,,.(X))'" fo(.) (f,,X.4,®rvd,,V) dU 
= (c~-XaV~.,~,,.(X))~"h.(.a, ® Id). 

Repeating this argument 7n - 1 times we get 

hn(.Ao ® Id) < (eE-'AV#m#,n(X))'rPn'hn(A.m). 
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Since h,(`47,  ) _< 1, Proposition 2.2 would follow directly from (5.1) and the 

definition of ,40 ® Id. 

To show (5.5) first observe that  for every k = 0 , . . .  , 7n - 1 and every V E 7"/ 

we have 

XAh®V = XAJ,+t®vX.4k®v. 

Therefore, for k = 0 , 1 , . . . , T n  - 1 and U • O(n), we have 

(5.6) f,,x.,,®vd,,v=f,,x.,,+,®vx.,,®va,,v. 
Fix U • O(n) such that  U(Fo) • ~'. In order to simplify the notation we shall 

prove (5.5) for k = 0. The case of arbitrary k • {1,2 , . . .  ,Tn - 1} can be proved 

in exactly the same way. Denote {e l , . . .  , e.t,~-I } by R "m-1 and observe that ,  by 

Fact III, without loss of generality we may assume that  

(5.7) Qu(Fo)ei • R ~n-1 for (1 - 7)n < i < n - 1. 

By g denote the group of all W • O(n) such that 

(5.8) WI  R'm-1 = Id and WI(R~n)  ± = Id. 

Clearly ~ is isomorphic to O((a - 7)n + 1). Let ha denote the normalized Haar 

measure on ~. The same argument as in (5.4) and (5.6) yields that  

f, X.,,®vX.,o®vd,,V= f,, (faX.,,®vwx.,°®vwdaW) d,,V. 
Since 1 - 7  >- a ,  by (5.2), (5.3), (5.7) and (5.8), we have, for ( 1 - 7 ) n  < i < n -  1, 

Qvwu(Fo)ei = VWQu(Fo)W-1V-lei = VWQu(Fo)ei 

= VQv(fo)ei = Qvu(fo)ei, 

so the function XA,®vw does not depend on W. Therefore 

(5.9) f,,x.4,®vXao vdnV = f ,xa,®v X.4o®vwdaW) dnV. 
Observe that  by (5.8) and (5.2), # C 7( and so, by (5.3), the inner integral in 

(5.9) satisfies 

/ XAo®VW dgW 

= ho{W E g I U(F0) • ~', TQvwu(Fo)e, • ABe,,)} 

= ho{W • ~IU(Fo) • .F, TVWQu(Fo)W-1V-le,  E ABe,,,)} 

(5.10) 
= ho{W • ~ I U(F0) • ~', TVWQv(Fo)e, • ABe, n)}. 

Since the operator TV has the same s-numbers as T has, for V • 7~, (5.5) is an 

immediate consequence of (5.6), (5.9), (5.10) and the following lemma. 
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LEMMA 5.1: Let 0 < a < 1 and let A > O. Let Eo • Gn,(~-a), satisfy (A) and 
let Ban = Q Eo B , .  Let ~ , ~' and 7 satisfy the assumptions of Proposition 2.2 case 
(i) or (ii), and let 77 be defined as at the beginning of the proof of Proposition 2.2. 

Let ~ be the group defined in (5.8). Then for every Fo • ~" and every U • O(n) 

such that U(Fo) • ~', we have 

ha{W e g I TWQU(Fo)en • ABa.)} _< (ce-lAVa.,a,n) #n, 

for every T 6 L(N n) which has exactly r/n s-numbers smaller than 1, where 
satisfies condition (C) and c = c( a, #, f f  ). 

Proof: By condition (A), E~  = E1 @ E~ with E1 1 E~, QEo (El) l QEo (E~) and 
dim E1 _< 7n, and such that  QEolE1 (resp. QEoIE~) has i l  s-numbers larger 

than cl (resp. s m i l e r  than c1). Set F1 = QEo(E1) C R ~n. 

Fix an operator T 6 L(R")  which has exactly r/n s-numbers smaller than 1. 

Write R an = E~ $E'9 with E2 ±E~, T(E2)±T(E~)  and dimE2 = r/n, and such 

that  TIE2 (resp. T]E~) has i l  s-numbers s m i l e r  than 1 (resp. larger than or 

equal to 1). Set F2 = T(E2) C IU*". 
Set Fs = T(R~n-~), so that  dimFs < 7n. Observe that  by (5.7) and (5.8), for 

every W 6 Q we have 

T W (  span{QE0ei I(1 - 7 ) n  < i < n -  1}) C Fs. 

Let E C R ~" be any fl'n-dimensional subspace such that  

E_I_F i for j = 1, 2, 3. 

(For /~  like this to exist we need a - (7/+ 27) > /9'. This inequality in turn 

follows directly from the definition of r / and  the inequalities 7 <- (a - fl')/2 in 

case (i) and 7 -< (a/2 - ~') /2  in case (ii).) 

Set S = QEolEo x : E ~  --* R ~'" and E = (S-1(/~)) a-. Clearly, E D E0 and 

d i m E  = (1 - fl')n. By the definition of V#.,#,. = V#. ,# , . (B.)  there exists a 

(1 -/9)n-dimensioni subspace F D E of R"  such that  

(5.11) (vol#.Pm(B.) /vol~.PF(B2.))  '/~" <_ V~.,#,n. 

Observe that  SPF I R an is a projection in R a" and SPF(R an) C ~7. Let P be 

the o r t h o g o n l  projection in R an with the same kernel as SPF ] R a". 
Set 

~4' = {W 6 ~ ] PTWQu(Fo)e.  6 APBa . } .  
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Clearly, if ,4 denotes the set in the conclusion of the lemma, then 

(5.12) .4 c .4'. 

Set R = T I E  ~. Recall that  R has all s-numbers larger than or equal to 1 and 

in particular it is invertible. Since F2 C ker P,  the operator P* = R - 1 P T  is well 

defined and it is a projection. In fact, P T  = TP  ~ = RP  ~, therefore, 

.4' = {W • g [ P'WQu(Fo)en • AR-1PB~n}.  

Note that  R "1n-1 = span{el , . . .  ,e~n-1} satisfies R ~n-1 C k e r P  ~. 

Denote by H the orthogonal complement of R "~n-1 in R an and by P1 the 

orthogonal projection on H. Let P0 be the projection in R an such that  p i  = 

POP1. Clearly, WP1 = PIW for every W • ~. Set 

z = Qu(Fo)en 

zo = P , ( z ) / l l P , ( z ) l l 2 .  

Clearly P'WQucFo)e, = P o W ( z o ) l l P , ( z ) l l 2 .  Recall that U(Fo) e ~ and in 
particular it satisfies condition (C). Let e > 0 be a constant as in (C). Set 

(5.13) A" = {W E g [ PoW(zo) E e - I A R - 1 P B ~ , } .  

Then HPI(Z)H2 >_ e. Thus 

(5.14) .4' c .4". 

Since G can be identified with the orthogonal group acting on H,  the measure of 

.4" is equal to the measure of a suitable subset of the sphere SH in H.  We have 

(5.15) h~(A") = Psx ({x • SH I Pox • ~ - IAR-1PB~n}) .  

Denote by .4 the subset of SH which appears on the right hand side of (5.15). 

The estimate for the measure of such a set is well known. Using e.g. Lemma 3 

in [Ma.1] we get 

vol (e - IAR-1pB~n)  vol B E 
(5.16)  H(2) < 

vol B~i m H 

(ce_lA)~n vol R-1PBan 
- v o l  B ~  ' 

and 
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where c = c(a,~) > O, and k = dimker P0 = dimH -/3n. 

It remains to estimate voIR-:PB,~,. Observe first that since all s-numbers 

of R are larger than or equal to 1 then R -I is a contraction (in the Euclidean 

norm) and 

vol R-IPBan <_ vol PBan. 

Clearly, 

vol PB~n <_ vol SPFB~n. 

Observe that S PF(R an) C E C Q Eo ( E~ ) ). Moreover, by property (A), Q Eo I E~: 

E~ ~ QEo(E~) is a cl-isomorphism (in the Euclidean norm). Also, F D E0. 

Thus 

vol SPFBan ~_ c~1 n vol PFBan = cl ~n vol PFBn. 

Therefore, by (5.11), we have 

vol P B a ,  <_ (c,V#,,,~,,,(X)) #" vol B~,,. 

Combining the later estimate with (5.16), (5.15), (5.14) and (5.12), we conclude 
the proof of Lemma 5.1 and hence the proof of Proposition 2.2. 
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